2017小升初數學易錯問題及分析

發表時間:2017-04-21 20:39:50 文章來源:華當教育網 www.owgtzl.live

《2017小升初數學易錯問題及分析》是有華當教育網(www.owgtzl.live)為你整理收集,如有錯誤請及時反饋:

  小升初數學復合題有哪些易錯點,復合應用題中的某些問題,解題時需先根據已知條件,求出一個單位量的數值,如單位面積的產量、單位時間的工作量、單位物品的價格、單位時間所行的距離等等,然后,再根據題中的條件和問題求出結果。這樣的應用題就叫做歸一問題,這種解題方法叫做“歸一法”。有些歸一問題可以采取同類數量之間進行倍數比較的方法進行解答,這種方法叫做倍比法。

  由上所述,解答歸一問題的關鍵是求出單位量的數值,再根據題 中“照這樣計算”、“用同樣的速度”等句子的含義,抓準題中數量的對應關系,列出算式,求得問題的解決。

  例1小紅騎車3分鐘行600米,照這樣的速度她從家到學校行了10分鐘,小紅家到學校有多少米?

  [解]600&pide;3×10

  =200×10

  =2000(米)。

  答:小紅家到學校有2000米。

  [常見錯誤]

  600&pide;10×3

  =60×3

  =180(米)。

  答:小紅家到學校有180米。

  [分析]

  解答上題先要求出1分鐘行的路程,再求出10分鐘行的路程。錯解中把3分鐘行600米,看成了10分鐘行600米,因此,第一步求單位量的數值就錯了,后面再去乘以3是毫無道理的。防止出錯的根本辦法是解題時要找準對應的數量。如上例,3分鐘行的路程對應的是600米,10分鐘行的路程對應的小紅家到學校的路程。

  例2某運輸公司用6輛汽車運水泥,每天可運96噸。根據運輸情況,現在增加4輛同樣的汽車,每天一共運水泥多少噸?

  [解]96&pide;6×(6+4)

  =16×10

  =160(噸)。

  答:每天可運水泥160噸。

  [常見錯誤]

  96&pide;6×4

  =16×4

  =64(噸)。

  答:每天可運水泥64噸。

  [分析]

  解答歸一問題先求出單位量的數值,但對題中要求的問題應加以分析。上題中“增加4輛同樣的汽車”,每天一共運水泥多少噸,應是增加的汽車運輸量與增加前的運輸量的和,即10輛汽車的運輸量。歸一問題常常發生例2的錯解,主要原因是沒有認真分析與理解題意,把要求的問題所對應的數量搞錯,從而出現錯誤。

  例3某縣化肥廠計劃春節前40天生產化肥3400噸,實際頭8天生產化肥720噸。照這樣計算,春節前可超產多少噸?

  [解]720&pide;8×40-3400

  =90×40-3400

  =3600-3400

  =200(噸)。

  答:春節前可超產200噸。

  [常見錯誤]

  (1)3400&pide;40×(40-8)+720

  =85×32+720

  =2720+720

  =3440(噸)。

  答:春節前可超產3440噸。

  (2)720&pide;8×40

  =90×40

  =3600(噸)。

  答:春節前可超產3600噸。

  (3)720&pide;8-3400&pide;40

  =90-85

  =5(噸)。

  答:春節前可超產5噸。

  [分析]

  學生對歸一問題的基本應用題一般都能解答出來,但是,對歸一問題的擴展題解答時卻常常出錯。例3就是這種擴展題,出現的第一個錯解是對題意不理解,僅根據題中已知條件的表面聯系,胡亂湊在一起,進行解答。錯解(2)與錯解(3)都是答非所問,沒有按照題目的要求,進行解答。錯解(2)求出的是春節前實際生產的噸數,錯解(3)求出的是實際每天比原計劃每天多生產的噸數。

  為了防止歸一問題的擴展題解答出錯,關鍵還是要掌握歸一問題的基本解法。如例3先求出每天實際生產的噸數,再求出春節前40天實際生產的總噸數,最后求出超產的噸數。按照這個思路,解題就不會出現錯誤。

  歸一問題的擴展題往往有多種解法,如例3可用倍比法先求出實際產量,再減去原計劃產量就得超產量。列式為:

  720×(40&pide;8)-3400。

  也可以先求出每天的超產量,然后再求出40天的超產量。解答的算式為:

  (720&pide;8-3400&pide;40)×40。

  例4洗衣機廠計劃25天生產洗衣機4000臺,實際每天比計劃多制造40臺。照這樣計算,完成原定生產任務要少用多少天?

  [解]25-4000&pide;(4000&pide;25+40)

  =25-4000&pide;(160+40)

  =25-4000&pide;200

  =25-20

  =5(天)。

  答:完成原定生產任務要少用5天。

  [常見錯誤]

  4000&pide;(4000&pide;25+40)

  =4000&pide;(160+40)

  =4000&pide;200

  =20(天)。

  答:完成原定任務要少用20天。

  [分析]

  例4是一道較復雜的歸一問題的應用題,錯解算出的是完成原定生產任務所需的時間,而忽略了題中要求的是少用多少天。

  解復雜的歸一問題的應用題,也和解其他類型的應用題一樣,可從題目本身的問題出發,逆推分析,從而求得問題解答的算式。像這道題要求少用多少天,必須知道計劃天數(已知為25天)與實際生產天數;要求實際生產天數必須知道實際生產量(已知為4000臺)與每天實際生產臺數;要求每天實際生產臺數必須知道原計劃每天生產臺數(算式為4000&pide;25)與實際比計劃多生產的臺數(已知為40臺);這樣逐步導出的解答算式為:25-4000&pide;(4000&pide;25+40)。

  反映時間、速度、距離三者之間關系的應用題一般稱為行程問題。行程問題的內容相當廣泛,目前小學數學教材中行程問題僅涉及相向運動中的相遇問題。


更多小升初數學相關文章:

1.小升初數學試卷及答案人教版2017

2.2017年小升初數學復習計劃安排

3.2017年小升初分班考試數學模擬試卷及答案

4.2017小升初數學模擬試卷

5.2017小升初數學知識點大全

6.2017小升初數學模擬試卷(填空題)

7.2017小升初數學模擬試卷【人教版】

8.2017小升初數學應用題及答案

9.2017年小升初數學考試高分技巧

10.2017年三年級下冊數學期末試卷【蘇教版】

快速时时彩官网